Progression Towards a Written Method for Addition

In developing a written method for addition, it is important that children understand the concept of addition, in that it is:

- Combining two or more groups to give a total or sum
- Increasing an amount

They also need to understand and work with certain principles, i.e. that it is:

- the inverse of subtraction
- commutative i.e. $5+3=3+5$
- associative i.e. $5+3+7=5+(3+7)$

The fact that it is commutative and associative means that calculations can be rearranged, e.g. $4+13=17$ is the same as $13+4=17$.

YR

Early Learning Goal:
 Using quantities and objects, children add two single-digit numbers and count on to find the answer.

Children are encouraged to develop a mental picture of the number system in their heads to use for calculation. They should experience practical calculation opportunities using a wide variety of practical equipment, including small world play, role play, counters, cubes etc.

Counting all method

Children will begin to develop their ability to add by using practical equipment to count out the correct amount for each number in the calculation and then combine them to find the total. For example, when calculating $4+2$, they are encouraged to count out four counters and count out two counters.

To find how many altogether, touch and drag them into a line one at a time whilst counting.

By touch counting and dragging in this way, it allows children to keep track of what they have already counted to ensure they don't count the same item twice.

Counting on method

To support children in moving from a counting all strategy to one involving counting on, children should still have two groups of objects but one should be covered so that it cannot be counted. For example, when calculating $4+2$, count out the two groups of counters as before.

then cover up the larger group with a cloth.

For most children, it is beneficial to place the digit card on top of the cloth to remind the children of the number of counters underneath. They can then start their count at 4 , and touch count 5 and 6 in the same way as before, rather than having to count all of the counters separately as before.
Those who are ready may record their own calculations.
YI

```
End of Year Objective:
Add one-digit and two-digit numbers to 20, including zero (using concrete objects and
pictorial representations).
```

Children will continue to use practical equipment, combining groups of objects to find the total by counting all or counting on. Using their developing understanding of place value, they will move on to be able to use Base 10 equipment to make teens numbers using separate tens and units. For example, when adding II and 5, they can make the II using a ten rod and a unit.
\square

The units can then be combined to aid with seeing the final total, e.g.
\square

so $11+5=16$. If possible, they should use two different colours of base 10 equipment so that the initial amounts can still be seen.

Y2

End of Year Objective:
Add numbers using concrete objects, pictorial representations, and mentally, including: a two-digit number and ones; a two-digit number and tens; two two-digit numbers; three one-digit numbers.

Children will continue to use the Base 10 equipment to support their calculations. For example, to calculate $32+21$, they can make the individual amounts, counting the tens first and then count on the units.

When the units total more than 10 , children should be encouraged to exchange 10 units/ones for I ten. This is the start of children understanding 'carrying' in vertical addition. For example, when calculating $35+27$, they can represent the amounts using Base 10 as shown:

Then, identifying the fact that there are enough units/ones to exchange for a ten, they can carry out this exchange:

To leave:

Children can also record the calculations using their own drawings of the Base 10 equipment (as slanted lines for the 10 rods and dots for the unit blocks).
e.g. $34+23=$

With exchange:
e.g. $28+36=$

so $28+36=64$

- - It is important that children circle the remaining tens and units/ones after exchange to identify the amount remaining.
This method can also be used with adding three digit numbers, e.g. $122+217$ using a square as the representation of 100 .

